Playing the Isotope Keyboard with the SAiVE Lab for Environmental Sciences and Ecological Applications
By Clément Bataille, Department of Earth and Environmental Sciences
Abstract: Elements exist under different forms called isotopes. Isotopes are therefore the building blocks of all organic and inorganic material in the universe. The distribution of isotopes in environmental substrates records and preserves the fascinating melody of past and present natural processes that have occurred since the dawn of time. Isotope geochemists such as myself and the students in my group, the SAiVE lab, are like detectives trying to translate the hidden melody contained in the chemical language of isotope distribution. My students and I focus on deciphering how the distribution of isotopes in environmental substrates tell us something about environmental and ecological processes on the surface of this planet. We analyze isotope proportions in organic material such as hair, feathers, bones or tusks to reconstruct the history, diet or mobility of animals and humans. By reconstructing migration routes and population connectivity, our work has direct applications in conservation ecology, paleoecology, archeology and forensics. We also analyze isotope distribution in water molecules and in metals dissolved in rivers to understand where solutes are coming from and how glacial, physical and biological processes on catchments are influencing river chemistry. By tracing solute sources, and reconstructing processes that control water chemistry in Arctic rivers, we can help mitigate risks associated with water quality and water supply in a changing climate. Lastly, we also analyze isotopes in ancient rocks to reconstruct past climates and environmental processes that led to mass extinctions in the history of this planet. In the next 50 years, our planet will be confronted with massive environmental challenges from water crises to biodiversity loss. Isotope geochemistry will be critical to forecast and prepare for some of these environmental challenges. In this short lecture, I will give an overview of some of the research happening in the SAiVE Lab at the University of Ottawa, but more broadly, I hope to convince you of the fascinating potential of isotope science.
Biography: If you asked me when my scientific career really started, I would tell you that it started when I was a 4-year-old boy running around my backyard in the French countryside, gaily sprinting from flower to flower and identifying each new bud that opened up to the springtime sun. My mother reports that I would spend hours at this activity. My career started in these moments. Earth and Environmental sciences are not simply about what we learn in a lab or a classroom; it starts with wonder. Any scientist, to be a good investigator and a good educator, must begin with an awe for the universe. When your career takes you to more specialized science, it is good to remember those first moments of wonder which perhaps once left us silent in the face of a mountain or an ocean, or even a flower. This passion for the natural world is what led me to study science. I started by studying agronomy and environmental engineering at the Institute Polytechnique de Toulouse. During my MSc, I focused on questions related to the role of agricultural practises on the hydrochemistry of river waters and discovered the fabulous world of isotope geochemistry. I immigrated to the USA to do my PhD in Geology and Geophysics at the University of Utah. During my PhD, I developed new isotopic tools to track the mobility of animals and reconstruct ancient climates. After completion of my PhD in 2014, I worked as an Earth scientist at Chevron Corporation developing new geochemical tools to assess reservoir connectivity. I returned to academia as a postdoctoral fellow in geoscience at the University of North Carolina in 2016 to work on refining the causes of the most catastrophic mass extinction event on Earth using metal isotopes. I joined the faculty of Science at the University of Ottawa as an assistant professor in Earth and Environmental Sciences in the fall of 2017 where I created the SAiVE Lab. My group is highly interdisciplinary and currently composed of 2 postdocs, 2 PhD students, 3 MSc students and 1 undergraduate split between BIO and EES. I recently became the Director of the Jan Veizer Stable Isotope Laboratory, the primary analytical platform for stable isotopes at the University of Ottawa.