When using our services, please acknowledge the facility in your publications and reference the Louise Pelletier Histology Core RRID: SCR_021737.

Keep our facility in your publications!

Why acknowledge us:

  1. Core facility personnel are scientists. When they make a substantial intellectual and/or experimental contribution to a publication they deserve to be acknowledged.
  2.  The existence of core facilities depends in part on proper acknowledgements in publications. This is an important metric of the value of most core facilities. Proper acknowledgement of core facilities enables them to obtain financial and other support so that they may continue to provide their essential services in the best ways possible. It also helps core personnel to advance in their careers, adding to the overall health of the core facility.

When to acknowledge:

  • Anytime the Louise Pelletier HCF provides services that support your research.

Where to acknowledge:  

  • Papers, Posters, Presentations, Scholarly Reports, Publications and Grants

Format for the acknowledgement:

Example: “We gratefully acknowledge Histology/Imaging/Staining services provided by the Louise Pelletier HCF (RRID: SCR_021737)  at the University of Ottawa.”

We request a copy of the publication in PDF format, so that we can keep track of successful research projects that were accomplished using the Core.

Publications with Acknowledgement and/or Authorship:

  1. Rezaei, R. et al. (2024). Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-024-01259-7.
  2. Sutton, E. et al. (2024). Liver SMN restoration rescues the Smn2B/- mouse model of spinal muscular atrophy. eBioMedicine 2024;110: 105444.
  3. Liu, H. et al. (2024). SMN depletion impairs skeletal muscle formation and maturation in a mouse model of SMA. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddae162.
  4. Tami, L. et al. (2024). Lipid nanoparticle encapsulation improves effectiveness of a Delta Spike-CD40L DNA vaccine against homologous and heterologous SARS-CoV-2 challenge in Syrian hamsters. Molecular Therapy: Methods & Clinical Development. https://doi.org/10.1016/j.omtm.2024.101325
  5. Taha, Z. et al. (2024). Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnosticimmunotherapy. Nature Communications. 15:7267
  6. Kornfeld, S. F et al. (2024). Loss of miR-145 promotes remyelination and functional recovery in a model of chronic central demyelination. Communications Biology. https://doi.org/10.1038/s42003-024-06513.
  7. Smith, T. K.T et al. (2024). AMPK-mediated regulation of endogenous cholesterol synthesis does not affect atherosclerosis in a murine Pcsk9-AAV model. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2024.117608.
  8. Kanaan, M. W et al. (2024). Cystine/Glutamate Antiporter xCT Controls Skeletal Muscle Glutathione Redox, Bioenergetics and Differentiation. Redox Biology. https://doi.org/10.1016/j.redox.2024.103213.
  9. Jirovec, A. et al. (2024). Immune profiling of dedifferentiated liposarcoma and identification of novel antigens for targeted immunotherapy. Scientific Reports. 14:11254.
  10. Nunes, J. R. C. et al. (2024). Myeloid AMPK signaling restricts fibrosis but is not required for metformin improvements during CDAHFD-induced NASH in mice. Journal of Lipid Research. https://doi.org/10.1016/j.jlr.2024.100564.
  11. Iqbal, M. A. et al. (2024). The integrated stress response promotes neural stem cell survival under conditions of mitochondrial dysfunction in
    neurodegeneration. Aging Cell. https://doi.org/10.1111/acel.14165.
  12. Cairns, G. et al. (2024). PINK1 deficiency alters muscle stem cell fate decision and muscle regenerative capacity. Stem Cell Reports. 19 (5): 673.
  13. Freeman, E. et al. (2024). Pannexin 1 dysregulation in Duchenne muscular dystrophy and its exacerbation of dystrophic features in mdx mice. Skeletal Muscle. https://doi.org/10.1186/s13395-024-00340-8.
  14. Geertsma, H, M, et al. (2024). A topographical atlas of α-synuclein dosage and cell type-specific expression in adult mouse brain and peripheral organs. npj Parkinson's Disease. https://doi.org/10.1038/s41531-024-00672-8.
  15. Rasool, D. et al. (2024). PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS. EMBO Reports. https://doi.org/10.1038/s44319-024-00082-0.
  16. Triolo, M. et al. (2024). Optic atrophy 1 mediates muscle differentiation by promoting a metabolic switch via the supercomplex assembly factor SCAF1. https://doi.org/10.1016/j.isci.2024.109164.
  17. Weldrick, J. J. et al (2024). MicroRNA205: A Key Regulator of Cardiomyocyte Transition from Proliferative to Hypertrophic Growth in the Neonatal Heart. https://doi.org/10.3390/ijms25042206.
  18. Callao, N et al. (2023). Radiation induces long-term muscle fibrosis and promotes a fibrotic phenotype in fibro-adipogenic progenitors. Journal of Cachexia, Sarcopenia and Muscle. DOI: 10.1002/jcsm.13320.
  19. Khan, A et al. (2023). The TNFα/TNFR2 axis mediates natural killer cell proliferation by promoting aerobic glycolysis. Cellular & Molecular Immunology; https://doi.org/10.1038/s41423-023-01071-4.
  20. Parmasad, J.L. et al. (2023). Genetic and pharmacological reduction of CDK14 mitigates α-synuclein pathology in human neurons and in rodent models of Parkinson’s disease. BioRxiv. https://doi.org/10.1101/2022.05.02.490309.
  21. Goudreau, A. et al. (2023). Characterization of Hofbauer cell polarization and VEGF localization in human term placenta from active and inactive pregnant individuals. Physiological Reports. https://doi.org/10.14814/phy2.15741.
  22. Azad, T. et al. (2023). Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nature Communications. https://doi.org/10.1038/s41467-023-38651-x.
  23. Nunes, J.R.C. et al. (2023). Thermoneutral housing does not accelerate metabolic dysfunction-associated fatty liver disease in male or female mice fed a Western diet. bioRxiv 2023.01.24.524609. DOI: https://doi.org/10.1101/2023.01.24.524609.
  24. Suk, T.R., et al. (2023). Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain, ISCIENCE, DOI: https://doi.org/10.1016/j.isci.2023.106350.
  25. Hickey, R.J. et al. (2022). Designer Scaffolds for Interfacial Bioengineering.  Advanced Engineering Materials. DOI: https://doi.org/10.1002/adem.202201415.
  26. Pileggi, C.A. et al. (2022). Exercise training enhances muscle mitochondrial metabolism in diet-resistant obesity. eBioMedicine. DOI: https://doi.org/10.1016/j.ebiom.2022.104192.
  27. Baker, N. et al. (2022). The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2022.07.010.
  28. Lithopoulos, M. A. et al. 2022. Neonatal hyperoxia in mice triggers long-term cognitive deficits via impairments in cerebrovascular function and neurogenesis. J. Clin. Invest. https://doi.org/10.1172/JCI146095.
  29. Geertsma, H. M. et al. 2022. Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor dysfunction and cortical atrophy, independent of protein aggregation. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddac035.
  30. Reilly, A. et al. (2022). Central and peripheral delivery of AAV9-SMN target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Therapy. https://doi.org/10.1038/s41434-022-00338-1.
  31. Wedge, M.E. et al. (2022). Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications. https://doi.org/10.1038/s41467-022-29526-8.
  32. Tamming, L.A. et al. (2022). DNA Based Vaccine Expressing SARS-CoV-2 Spike-CD40L Fusion Protein Confers Protection Against Challenge in a Syrian Hamster Model. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2021.785349.
  33. Geertsma, H. M. et al. (2022). Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Human Molecular Genetics.https://doi.org/10.1093/hmg/ddac035.
  34. Hurskainen, M. et al. (2021). Single Cell Transcriptomic Analysis of Murine Lung Development on Hyperoxia-induced damage. Nat Commun 12(1):1565.
  35. Cyr-Depauw, C. et al. (2021). Characterization of the innate immume response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatric Research. 89(4):803
  36. Gharibeh.L, et al.(2021). GATA6 is a regulator of sinus node development and heart rhythm. PNAS 118(1):e2007322118.
  37. Culliton, KN and Speirs, AD (2021). Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2021.05.060.
  38. Geertsma, HM et al. (2021). Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor dysfunction and cortical atrophy, independent of protein aggregation. https://doi.org/10.1101/2021.10.13.464123.
  39. Watanabe, M. et al. (2021). Bone replaces unloaded articular cartilage during knee immobilization. A longitudinal study in rat. Bone 142. 115694.
  40. McCloskey, CW et al. (2020). Metformin abrogates age-associated ovarian fibrosis. Clin. Cancer. Res. 26(3):632.
  41. Zhou, H et al. (2020). Reversibility of marrow adipose accumulation and reduction of trabecular bone in the epiphysis of the proximal tibia. Acta Histochemica (122):151604.
  42. Kang, M. et al. (2020). A lung tropic AAV vector improves survival in a murine model of surfactant B deficiency. Nat Commun 11(1):3929.
  43. Tomlinson, J. et al. (2017). Holocranohistochemistry enables the visualization of a-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. J Neural Transm. 124:721.
  44. Modulevsky DJ, et al. (2016). Bicompatibility of subcutaneously implanted plant derived cellulose biomaterials. PloS One 11(6): e0157894.
  45. Zhang, Q et al. (2012). Mouse Nkrpl-clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance. Plos One 7(12):e50561.
  46. Sandhu, JK et al. (2000). Neutrophils, nitric oxide synthase; mutations in the mutatect murine tumor model. Am J of Path. 156: 2(504).